skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bellis, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biscarat, C; Campana, S; Hegner, B; Roiser, S; Rovelli, CI; Stewart, GA (Ed.)
    The CMS experiment at CERN has released research-quality data from particle collisions at the LHC since 2014. Almost all data from the first LHC run in 2010–2012 with the corresponding simulated samples are now in the public domain, and several scientific studies have been performed using these data. This paper summarizes the available data and tools, reviews the challenges in using them in research, and discusses measures to improve their usability. 
    more » « less
  2. Abstract The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 $$\hbox {ab}^{-1}$$ ab - 1 of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential. 
    more » « less
  3. Abstract The long-term sustainability of the high-energy physics (HEP) research software ecosystem is essential to the field. With new facilities and upgrades coming online throughout the 2020s, this will only become increasingly important. Meeting the sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g., Unix, version control, C++, and continuous integration). The second is knowledge of domain-specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving specialized techniques, including parallel programming, machine learning and data science tools, and techniques to maintain software projects at all scales. This paper discusses the collective software training program in HEP led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients for the solution of HEP computing challenges. Beyond serving the community by ensuring that members are able to pursue research goals, the program serves individuals by providing intellectual capital and transferable skills important to careers in the realm of software and computing, inside or outside HEP. 
    more » « less